Evaluation of Meniscal Abnormalities Using T2 Relaxation Time Mapping at 3T

KellyAnne McGorty, BSRT, (R),(M), (MR); Ding Xia, MS; Gregory Chang, MD; William Fazio BSRT, (R) Kamil Bani-Baker BSRT, (R) (MR); Daniel K. Sodickson MD, PhD; Christian Glaser MD, Ravinder Regatte, PhD; New York University Langone Medical Center, Department of Radiology. 660 First Ave. New York, NY, USA, 10016. Tel: (212) 263-4820

**Purpose:** Transverse relaxation time (T2) mapping is a parametric magnetic resonance imaging (MRI) technique used to study compositional and structural changes in cartilage related to tissue anisotropy, collagen concentration, and water content within the matrix. In OA patients, T2 relaxation times provide a non-invasive means to detect early biochemical changes in cartilage prior to gross volume loss. The meniscus plays a primary role in shock absorption, load distribution, enhances stability and guides movement guiding, and help with joint lubrication and a number of studies have shown an association between knee osteoarthritis (OA) and meniscal damage. Therefore, it is tempting to utilize the potential of T2 mapping to quantitatively evaluate meniscal abnormalities in OA. The purpose of this study was to investigate the feasibility of performing T2 mapping of menisci, to determine the potential to detect tears and ultimately to assist the radiologist in the grading of meniscal lesions.

**Methods:** MRI examinations of nine consecutive clinical patients with clinical symptoms of a meniscal tear and five healthy volunteers (seven males and seven females, mean age: 46.1 ± 14.0 years) were scanned on a 3T (Siemens; Verio) whole-body MRI scanner, equipped with a 15 Channel extremity (QED, Siemens) phased array coil. The clinical A routine protocol included TSE T2w FS and PDw sequences in the three major orthogonal planes. Relevant imaging sequence parameters were: Field of view (FOV) = 140mmx140mm, TR 2380-6520ms, TE=20-60ms, flip angle=145°-180°, bandwidth=181-257Hz/pixel, image matrix=384-448x75-85. MSME T2 mapping sequence (provided by the vendor) was implemented in the sagittal plane for full knee coverage. The se-mc imaging parameters for T2 mapping were: TR 3630ms, echo spacing (ESP) 13.8msec, 6 echoes (13.8msec to 82.8msec), FOV 150mm x 150mm, flip angle 180°, bandwidth 180 Hz/pixel, image matrix 256 x 100, acquisition time 6 minutes 55 seconds. T2 relaxation times were fitted by using a least squares fitting procedure from the six echoes and each meniscus was segmented manually based on T2 mapping. All segmentation and T2 mapping were processed offline using home-made software (FireVoxel). The standard TSE FS T2w / PDw and T2 mapping data sets were randomized and the reader was blinded re pat-ID for qualitative evaluation. An experienced musculoskeletal (MSK) radiologist scored the clinical images using the following modified WORMS grading system: 0 = intact, 1 = minor radial tear or parrot-beak tear, 2 = non-displaced tear, 3 = displaced or complex tear, and 4 = complete maceration of the meniscus. We compared the WORMS score results to the clinical radiologic report. The patient’s clinical reports were taken as the standard reference.

**Results:** Out of the 8 cases, there are 3 cases for grade 1, 3 cases of grade 2, 1 case for grade 3, 1 case of grade 3/4. Representative examples of the T2 maps for each grade and corresponding clinical images are shown in Figure 1. Mean T2 relaxation times for each grade are shown in Table 1. Average T2 across the menisci increased with increasing grade of meniscal tear depicted by the clinical reading based modified WORMS scoring (Table 1). 56 menisci were sampled, seven tears were identified with WORMS, and one was not identified but was accounted for in the clinical reports. Eight tears were identified by the clinical reading based modified WORMS scoring (Table 1). 56 menisci were sampled, seven tears were identified with WORMS, and one was not identified but was accounted for in the clinical reports. Eight tears were identified with WORMS, and one was not identified but was accounted for in the clinical reports. Eight tears were identified with WORMS, and one was not identified but was accounted for in the clinical reports.

**Conclusions:** This study shows that T2 mapping of the menisci is feasible and that the approach has potential for the diagnostic workup of meniscal abnormalities in OA patients. T2 mapping may be used to help grade meniscal abnormalities. However, in view of the short T2 relaxation times of normal menisci, a shorter echo spacing may be beneficial for fitting accuracy. More studies are needed to confirm the effectiveness of this sequence as a clinical biomarker for meniscal lesions in OA patients.

**References:**

**Table 1.** Mean_Meniscus_T2(MS)

<table>
<thead>
<tr>
<th></th>
<th>AHLAT</th>
<th>PHLAT</th>
<th>AHMED</th>
<th>PHMED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade 1</td>
<td>33.84</td>
<td>31.22</td>
<td>30.56</td>
<td>28.82</td>
</tr>
<tr>
<td>Grade 2</td>
<td>34.89</td>
<td>31.56</td>
<td>29.24</td>
<td>27.56</td>
</tr>
<tr>
<td>Grade 3</td>
<td>34.82</td>
<td>31.56</td>
<td>29.24</td>
<td>27.56</td>
</tr>
<tr>
<td>Grade 4</td>
<td>35.82</td>
<td>32.56</td>
<td>30.24</td>
<td>28.56</td>
</tr>
</tbody>
</table>

Figure 1 shows the T2 imaging and maps for each grade type identified.