This continuing educational offering is provided as an overview of MRI for the healthcare provider. The safety considerations for MR components are discussed in detail:

Safety Considerations for MR Components

Outline

- Magnetic Safety
 - Static field
 - Fringe Field
- Bioeffects
 - Long term
 - Reversible
- Patient screening techniques
 - How, who, why
- Implants

Objectives

Upon completion of this course, the attendee should:

1. Understand the importance of Patient Care in MRI (review of general patient care issues for MRI).
2. Learn safety considerations for the static magnetic field (static field, fringe field).
3. Learn techniques for patient screening & implants.

Biological Considerations

- Static Field
 - FDA, Tesla, Bio-effects
- Radiofrequency
 - SAR, FDA, Bio-effects
- Gradient Field
 - FDA, Time-Varied, Bio-effects

Disclaimer

© Copyright 2006 Imaging Education Associates, LLC. No part of this module may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording or by any other information storage and retrieval system without permission in writing from the publisher (Imaging Education Associates, LLC).
Slide # 7

Institute for Magnetic Resonance Safety, Education & Research
www.IMRSER.org
Frank Shellock, PhD, MRI Safety Page
www.mrisafety.com
Emanuel Kanal, MD, PhD
www.radiology.upmc.edu/MRSafety

"American College of Radiology White Paper on MR Safety", a document that "is intended to be used as a template for MR facilities to follow in the development of an MR safety program."

Excerpt from the ACR White Paper

MRI Safety Resources

Slide # 8

New Terminology With Regard to Magnetic Resonance Imaging (MRI) and Implants and Devices

• MR Safe
 - "an item that poses no known hazards in all MRI environments"

• MR Conditional
 - "an item that has been demonstrated to pose no known hazards in a specified MRI environment with specified conditions of use. Field conditions that define the specified MRI environment include static magnetic field strength, spatial gradient, d/dt (time varying magnetic fields), radio frequency (RF) fields, and specific absorption rate (SAR). Additional conditions, including specific configurations of the item, may be required."

• MR Unsafe
 - "an item that is known to pose hazards in all MRI environments."

• NOT MR Compatible
 - devices that have previously tested and deemed "MR Compatible" will not be changed. New devices will be deemed MR Safe, MR Unsafe or MR Conditional, since 2005...

Slide # 9

• Who needs MRI Safety Training?
 - Level 2
 - Technologists
 - Radiologists
 - ALL Healthcare Professionals
 - Level 2 or Level 1
 - Nurses
 - Doctors
 - Level 1
 - Ancillary Staff (Aides, Clerical)
 - Transporters
 - Others
 - Non MR Personnel
 - Fireman
 - Police
 - Visitors

MRI Safety for Everyone!

Slide # 10

• Level 1
 - Individuals who have passed minimal safety educational efforts to ensure their own safety as they work within Zone III regions will be referred to as Level One MR Personnel (e.g., M.R.I. department office staff, patient aides).

• Level 2
 - Individuals who have been more extensively trained and educated in the broader aspects of MR safety issues including issues related to the potential for thermal loading/burns, direct neuromuscular excitation from rapidly changing gradients, etc., will be referred to as Personnel (e.g., M.R.I. Technologists, Radiologists, Radiology Department nursing staff).

• Non-MR Personnel,
 - Patients, visitors, or facility staff who do not meet the criteria of Level One or Level Two MR Personnel.

"The ACR White Paper indicates that the medical director should be primarily responsible for the MR-safety training program."

Excerpt from the ACR white paper

Slide # 11

Safety Considerations for the Static Magnetic Field

- Main Magnetic Field
 - Within the bore
- Fringe Field
 - Outside the imager
 - Projectiles
- Forces
 - Translational
 - Rotational
- Bioeffects
- FDA Regulations
- Screening

Slide # 12

Imager Considerations - Zoning

Zone I:
- This includes all areas that are freely accessible to the general public

Zone II:
- This area is the interface between the publicly accessible uncontrolled Zone I and the strictly controlled Zone III
- This area is the region in which free access by unscreened Non-MR Personnel and/or ferromagnetic objects and equipment can result in serious injury or death. Access to at least Zone III is to be strictly restricted, with access...

Zone III:
- This area is synonymous with the MR scanner magnet room itself.

"The concept of designating various zones to help control site access relative to the static magnetic field of the MR system."

Excerpt from the ACR white paper
Fringe Field Considerations

- Magnetic Field strength can be expressed in units of tesla (T) or gauss (g)
 - $10,000 \, \text{g} = 1 \, \text{T}$
 - The fringe field is generally expressed in units of gauss
 - Isocenter is generally expressed in units of Tesla
 - The General Public is to be kept outside the 5 gauss line – of the fringe field!

Projectiles

- Terminal velocity of a projectile, determined by the mass of the object (and its material) and distance from the magnet.
 - "Missile effects" occur when the fringe field draws ferromagnetic materials rapidly into the magnetic field... like a "Missile!"

Magnetic Forces

- Rotational
 - Strongest at isocenter
- Translational
 - Greatest where the fringe field change is most severe (near the bore)
 - Contributes to "missile effects"

Translational Forces

- Close to the magnet, the field increases in strength rapidly over a short distance.
- Shielded magnets have a very "steep" fringe field and thus can produce very strong translational forces
 - Passive shielding (generally uses metal in the scan room walls to confine the fringe field)
 - Active shielding (generally uses current in coils within the magnet enclosure to confine the fringe field)

In the News 2001

- Don't bring your scissors (or other ferrous metal) into the MRI scan room

In the News 2004

Warning vs Danger Signs

Control Site Access

www.magnex.com

Courtesy: Anne Marie Sawyer-Glover / Stanford

Warning vs Danger Signs

Safety for the MR OR

Supplies for MR-OR’s:
• Non ferrous Hemostats
• Non ferrous Scalpels
• Weakly ferrous Needles
• MR “safe” monitoring devices and more!

Safety for the MR OR

Ultra High Field MRI – 3.0T and up

• Static Field
• Projectiles
• Implants – What has been tested?
• Artifacts
• Image Contrast
• RF Field
• SAR
• Gradient Field
• dB/dt
• Noise?

Ultra High Field MRI – 3.0T and up

Bioeffects

• Long term – none known
• Reversible
 – Magnet-hemodynamic Effect:
 – Magnet-hydrodynamic Effect:
 • Elevation of T-wave seen on ECG tracing while the patient is within the bore of the magnet
 • MagnetoPhosphenes:
 • “Stars in your eyes”

Bioeffects

Magnet – Hemodynamic Effect

Magnet – Hemodynamic Effect

Magnetophosphenes

Stimulate the retinal phosphenes
Stars in your eyes!

Magnetophosphenes

According to the latest guidelines from the U.S. Food and Drug Administration, clinical MR systems using static magnetic fields up to 8.0-Tesla are considered a “non-significant risk” for adult patients.

Excerpt, Bioeffects of Static Magnetic Fields, Shellock
Population Limit

| Adults, children and infants > 1 Month | 8 T |
| Infants 1 month or less | 4 T |

July 14, 2003

FDA Limit for Static Field

- Uses Cryogens
 - Liquid Helium
- Helium Stable as gas
 - Helium 750 (air) to 1 liquid
 - 1,000 liquid liters per magnet
 - 750,000 liters of gas inside the magnet!
- Quench
 - boil off of cryogen

Quench Hazards in the MR Scan room
- Increased pressure, can’t open door
- Reduced room temperature – frostbite
- Reduced Oxygen – asphyxia

Boil off of cryogen

Ramp down vs quench

- Ramp down
 - controlled removal of cryogens
 - controlled reduction of magnetic field
- Quench
 - uncontrolled removal of cryogens
 - cryogens are designed to vent into the ceiling through a venting system
- Quench Hazards in the MR Scan room
 - Note that the ceiling tiles have fallen out.
 - The increased pressure from the quench moved the scan room walls.
 - As the result the ceiling tiles fell out.

Venting system

Patient Care & Safety

- Screening
- Assessment & Monitoring
- Safety Precautions
- Biological Considerations
 (from the registry exam content specifications)
- Implants

Who needs Patient Screening

- Everyone who want to enter the MR environment
- Patient
- Family / Visitors
- Ancillary Staff Education
 - Transport personnel
 - Construction / Maintenance
 - Nursing
 - Patient Support
- Emergency Response
 - Security
 - Fire Department

Anyone who intends to enter The MRI Scan room!

How should MR Screening be done?

- Should be performed by trained individuals (Level 2)
- Screening should be performed more than once
- Screening with written, verbal interview & "visual" screening
- Screen all visitors as well as patients and document screening
- Screen and document each time a patient presents for an MR exam
- Document & Maintain screening documentation with patients records
- It is prudent to change all patients into a hospital gown, prior to the MR procedure, to avoid any metal from accidentally entering the MR scan room and/or to possibly notice surgical scars that the patient may have forgotten.
- Screen everyone that enters the room as if they are having the procedure themselves
- Forms available at www.mrisafety.com
Recommended Screening Forms

Forms available at www.mrisafety.com

- Forms for patients
- Forms for individuals

Why should screening be performed?

To determine...
- MR Unsafe
- ...The big 3 contraindications
 - Pacemaker
 - Metal eyes
 - Aneurysm clip
- MR Safe
- MR Conditional

Some implants are more obvious than others

Still considered a contraindication

Some facilities will scan pacemakers ONLY IF...

- Non-dependent...
- Patient meets criteria
- With the cardiologist, radiologist, company that makes the pacemaker
- During, and after the exam
- Reset pacer & assess the patient

Cardiac Pacemaker

Cost utility analysis of radiographic screening for an orbital foreign body before MR imaging.

Seidenwurm DJ, McDonnell CH 3rd, Raghavan N, Breslau J.

CONCLUSION: Clinical screening before radiography increases the cost-effectiveness of foreign body screening by an order of magnitude, assuming base case ocular foreign body removal rates. Asking the patient "Did a doctor get it all out?" serves this purpose. Occupational history by itself is not sufficient to mandate radiographic orbital screening. Current practice guidelines for foreign body screening should be altered.

Intraocular Ferrous Foreign Bodies (IFFB)

- Medical Risk vs. Benefit Decision
- Be sure to check field strength that the device / implant has been tested
- Up-to-date information is crucial
- Beware of blanket statements!
 - Example: all stents are not safe
- www.mrisafety.com
- www.imrser.org
- www.drkanal.com
- Concerns for Implants & Devices
 - Torque / movement (translational forces)
 - Electrical current induction (burns)
 - Tissue Heating (burns)
 - Device Failure

Implants in MR

Bone growth stimulator with broken leads

Radiologist is responsible for the decision to scan (risk vs benefit)

Just because they have been scanned before, does not automatically make them safe this time!
Patient Emergency

All MR personnel should be familiar with the procedure for removing a patient from the MR scan room in the event of a medical emergency

- MR “safe” supplies for imaging
- Non-ferrous IV poles
- Non-ferrous Wheel chairs
- Non-ferrous IV poles
- Stretchers
- Non-ferrous IV poles
- MR “safe” monitoring devices & more!

- “Zone III & Zone IV site access restriction must be maintained during resuscitation and/or other emergencies” Excerpt from the ACR White paper on MRI Safety.

Biological Considerations

- Static field (FDA, tesla, bio-effects)
- Gradient field (FDA, time-varied, bio-effects)
- Radiofrequency (SAR, FDA, bio-effects)

(from the registry exam content specifications)

Gradient Field Safety

- Gradient Units
 - 1 mT/m = 10 g/cm (strength / amplitude)
 - Microseconds (rise time)
 - T/M/S (slew rate- strength & speed)
- Gradient Switching
 - Higher slew rates increase possibility of current induction
- Time varied magnetic fields
- Bioeffects
- FDA Regulations

Gradient Coils

Biological effects of TVMF
- Peripheral nerve stimulation
 - Painful?
 - Magneto-phosphenes
- Acoustic Noise

Produce a gradient field also known as a Time Varyed Magnetic Field (TVMF)

Bio-effects of TVMF

- Peripheral nerve stimulation
 - no loops
 - do not cross hands or legs
 - Magneto-phosphenes
 - Stimulate the retinal phosphenes
 - Stars in your eyes!
- Acoustic Noise
 - Hearing protection

According to the FDA, special consideration should be given to certain patient populations (pediatric patients, seriously ill) when performing certain MR procedures that may produce peripheral nerve stimulation. Patients should be instructed to report any painful sensations that occur during the procedure.
Temporary hearing loss has been reported using conventional sequences. Earplugs - can reduce noise by 10 to 20 dB
- Recommended for all patients
- To reduce temporary, and permanent acoustic damage

“Any time rate of change of gradient fields (dB/dt) sufficient to produce severe discomfort or painful nerve stimulation.”
Specific Absorption Rate (SAR)

<table>
<thead>
<tr>
<th>Site</th>
<th>Dose</th>
<th>Time (min)</th>
<th>SAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>whole body</td>
<td>averaged over</td>
<td>15</td>
<td>4</td>
</tr>
<tr>
<td>head</td>
<td>averaged over</td>
<td>10</td>
<td>3</td>
</tr>
<tr>
<td>head or torso</td>
<td>per gram of tissue</td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td>extremities</td>
<td>per gram of tissue</td>
<td>5</td>
<td>12</td>
</tr>
</tbody>
</table>

Radiofrequency Fields

FDA/CDRH

Criteria for Significant Risk Investigations of Magnetic Resonance Diagnostic Devices

Issued - 07/14/03

Scans with increased RF

- **Scans & options**
 - Magnetic Transfer MTI
 - Fast Spin Echo FSE
 - More heat / more RF pulses
 - Double the flip, 4 x the power

- **Patients with compromised thermoregulatory systems**
 - higher risk for RF effects

- **Patients with higher risk**
 - cardiovascular disease, hypertension, diabetes, fever, elderly & obese
 - Certain medications can alter thermoregulatory response to heat load
 - Areas of Particular Concern
 - Eyes
 - Testis

Burn Possibilities

- Report of permanent brain injury from DBS probe (burn during MR exam) at 1.0 T
- Some can only be scanned with transmit/receive head coil
- Before scanning be sure the coil is receive only!
- Be sure that a device/implant is safe before scanning
- Report of 3rd degree burn (1.5T) with ICP catheter

Other Burn Possibilities

- Tattoos
- Metal in transdermal patches
- Metallic leads/probes
 - Coil cables
 - ECG leads
- Risk increases with field strength

Ultra High Field MRI

- **Static Field**
 - Implants – What has been tested?
 - Projectiles
 - Artifacts
 - Image Contrast
- **RF Field**
- **SAR**
- **Wavelength**
- **Gradient Field**
- **dB/dt**
- **Noise?**

MRI & Pregnancy - Patients

SMR Safety Committee -

“MR Imaging may be used in pregnant women if other nonionizing forms of diagnostic imaging are inadequate or if the examination provides important information that would otherwise require exposure to ionizing radiation.”
Technologists can enter the scan room
Can position the patient
But…
Recommended not to enter … while RF & gradients are running

Contrast Safety
- Extravasation
- Nephrotoxicity
- Adverse Events

Extravasation
Animal studies do show moderate necrosis
Osmolality a consideration
Not as big of a issue as with ionic iodinated contrast

Investigative Radiology 2002 July;37(7):393-8

Nephrotoxicity
- Standard IV use/doses
 - Not nephrotoxic (usually)
- Iodinated contrast equivalent doses or IA use for DSA
- Nephrotoxicity has been reported
- Debatable if gadolinium performs better than low osmolar iodinated agents
- Patients in Renal failure
- Nephrogenic fibrosing dermopathy
- Nephrogenic systemic fibrosis

Adverse Reactions
Minor reactions occur with all agents in a low percentage of cases
The current 5 agents have similar safety profiles
Anaphylactoid reactions are rare
Have occurred with all agents
Sites should be prepared to treat a reaction

Recommendations for Claustrophobic Patients - ACR
1. Prepare the patient (explanation)
2. Allow a family member to accompany
3. Maintain verbal/visual contact
4. Headphones
5. Monitor – distraction
6. Virtual reality
7. Feet-first
8. Prone
9. Mirrors or prism glasses
10. Blindfold
11. Lights
12. Fan
13. Lemon or vanilla scent
14. Relaxation techniques
15. Systematic desensitization
16. Hypnosis
Who should be monitored?

All patients should be monitored verbally & visually.

Who would require additional monitoring?

1) Patients who cannot communicate
2) Patients with weak voices
3) Patients who do not speak English
4) Patients who are sedated
5) Patients with diminished mental capacity
6) Patients at risk for contrast reaction

MR compatible monitors & devices

- ECG
- Pulse Oximeters
- Blood Pressure
- Respiratory & Apnea
- Temperature
- Multi-parameter monitoring systems

3.2 Patient Care & MRI Safety
Magnetism & MR Magnets

Thank you for your attention!

Click to take your post test and get your credits