Human imaging: *in vivo* & *ex vivo* brain specimens

- 3.0T MR
- 7.0T MR – human head and small bore for specimens & mice
- PET-MR
- Prospective motion compensation
- DTI/QSM/Hippocampal Subfield Analyses/Quantitative Volumetry
- Advanced pulse sequence implementation
- Traditional Histology & quantitative correlation with MRI
- CLARITY, X-ray microscopy, EM
- Machine Learning Applications

Neurodegenerative disorders:
- Iron in Alzheimer’s disease – NIH Funded
- Sports-related mild traumatic brain injury – PAC12 Funded
- Chronic fatigue syndrome

Basic brain anatomy and connectivity

Hard-working applicants with a lot of computer-based skills (image-processing know-how a must - MATLAB, UNIX, FSL, FreeSurfer, R, Fiji, python, etc.). Projects are highly collaborative and interdisciplinary. Experience with advanced MRI and neuroanatomy is required. Good writing skills and excellent references required. Familiarity with histological/molecular methods as well as PET a benefit.

Michael Zeineh, M.D.-Ph.D.
mzeineh@stanford.edu
http://med.stanford.edu/zeinehlab.html

*Stanford is an equal opportunity employer and all qualified applicants will receive consideration without regard to race, color, religion, sex, sexual orientation, gender identity, national origin, disability, veteran status, or any other characteristic protected by law.*