Postdoctoral Research Fellow Position at Massachusetts General Hospital/Harvard Medical School

The Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology at Massachusetts General Hospital is offering two postdoctoral positions based on NIH-funded projects to develop novel multi-modal neuroimaging methodology in animal models. This position is open now until filled.

Potential candidates will be considered based on the following three research directions:

a) Optimize the high spatiotemporal fMRI method, e.g. line-scanning and single-vessel fMRI, to specify circuit dysfunction and vasomotion impairment in animal models with a degenerative disease or vascular dementia.

b) Develop an MR-compatible fiber-based imaging device for brain dynamic signal recordings, e.g., Ca^{2+}, Glutamate, dopamine, CNiFERs, with simultaneous fMRI in awake rodents.

c) Implement the MRI/EEG/fiber photometry recording methods to detect brain state fluctuation and neuro-glial-vascular dynamic signaling in the brainstem lesion-induced rat coma model.

Candidates with strong computational/programming skills and experience in high-field animal fMRI are preferred. Also, we welcome candidates with experience in multi-photon optical imaging, fiber photometry, or \textit{in vivo} electrophysiology in animal models (rodents) to apply for this position, who can be trained to learn how to perform animal fMRI and fMRI data analysis.

We welcome candidates with high motivation, curiosity, and scientific maturity. The candidate should have strong teamwork skills and be flexible for night or weekend imaging time shifts.

Please send your CV and a cover letter to describe your background, interests, and research goals to Dr. Xin Yu by e-mail: xyu9@mgh.harvard.edu. Please include “Postdoc Application for Multi-modal Neuroimaging” in the subject line of your email.

Here is the selected publication list from Yu lab:

7. Wang M, He Y, Sejnowski TJ, Yu X. Brain-state dependent astrocytic Ca^{2+} signals are coupled to both positive and negative BOLD-fMRI signals. \textit{Proc Natl Acad Sci U S A.} 2018;115(7);E1647-E1656.