“Magnetic Resonance Imaging and Spectroscopy based MetAGE deep phenotyping”

One out of eleven Postdoctoral Positions in Austria in the Research Field
“Metabolic Control of Healthy Aging”

Positions Start Date: March 1, 2025
Application Deadline: September 10, 2024

We invite exceptional graduates from around the globe to join our interdisciplinary research team within the Cluster of Excellence “Metabolic Control of Aging and Disease (MetAGE)”, spanning three prominent Austrian Universities.

What we offer:
- Cutting-Edge Research: Engage in innovative projects exploring the molecular mechanisms of healthy aging and their clinical translation.
- State-of-the-Art Facilities: Conduct your research in laboratories equipped with the latest infrastructure.
- Expert Mentorship: Receive individual supervision and guidance from leading scientists in aging research.
- Comprehensive Training: Benefit from structured PhD and Postdoc training and career development programs.
- International Internships: Broaden your horizons through internships at international research laboratories or in the industry.

Postdoc Positions:
Postdocs receive an initial 2-year contract (extendable) including a competitive salary and social benefits. We offer an annual gross salary of € 66,532.20 for a fulltime position.

The Universities:
The positions are hosted at the University of Graz, the Medical University of Graz, and the Medical University of Vienna. Graz, Austria’s second-largest city, and Vienna, its largest city, are vibrant university towns known for their international communities and lively cultural scenes.

Application:
Our team values diversity, equity, inclusion, and accessibility. Applicants should provide a single PDF file including a cover letter explaining their motivation, a detailed CV, a summary of the scientific achievements (1/2 page), and names with contact information for three references. Applications must be submitted exclusively through our online platforms at https://postdoc-recruiting.medunigraz.at/ (applications for Postdoc positions).

You do not need to contact the supervisors. There is no application fee.

For more information about the Cluster of Excellence MetAGE, please visit our website: https://metage.uni-graz.at/en/

We look forward to your application and the possibility of you joining our dynamic research community.
Specifications of particular Position: MRI/S PostDoc – Medical University of Vienna

Objectives: To observe and analyze aging related changes in whole body fat compartmentation, ventricular function, myocardial morphology, brain structure and functional connectivity in healthy and obese populations. To analyze the relationship between these changes and metabolic aging phenotype.

Task: Implement, coordinate and supervise comprehensive whole body fat compartmentation, cardiometabolic phenotyping and brain MRI data acquisition, processing and analysis pipeline of clinical cohort at the Medical University of Vienna (whole body, cardiac and brain MRI/S @ 3T). To develop and implement multinuclear MRS/I studies of organ specific glucose and fatty acid metabolism at 3T and 7T MR systems for break out trials (multinuclear MRI/S @ 3 & 7T).

Requirements: PhD Degree in Medical Physics, Medical Imaging, (Bio)Physics or (Bio)Medical Engineering or related subjects, Experience with MR Data Acquisition, MR Data Processing

Desirable Skills: experience with (i) MR method development and validation, (ii) Matlab and/or Python, (iii) clinical research, and interest in multidisciplinary applications of MR in international environment.

Language skills: fluent English, basic or fluent German of Advantage

Successful Applicant will work in the team with Dr. Martin Krššák (martin.krssak@meduniwien.ac.at) and Dr. Thomas Scherer (Thomas.Scherer@meduniwien.ac.at).

References:

Tissue specific fat accumulation and cardiovascular phenotyping

1. Harreiter J, ... Scherer T, ... Krššák M, Kautzky-Willer A. Sex differences in hepatic and cardiac lipid accumulation and cardiac function across a cohort with wide range of glycemia: A secondary, cross-sectional analysis. In revision for Obesity July 2024. Preprint https://doi.org/10.21203/rs.3.rs-4213314/v1


Comprehensive multinuclear studies of organ specific metabolism


